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1 Introduction: A Problem of Ratios

Suppose you’re tasked to solve the equation (3
2
)x = (2

1
)y for x, y ∈ N. Even upon a cursory

glance, the problem is insoluble, since 3x can’t ever equal 2x+y due to the unique decom-

position of integers into prime factors. However, this is the problem that musicians have

faced since the time of the ancient Greeks. An interval, or the distance between two notes,

is defined as a ratio between the frequency of those notes. The two simplest intervals are

the octave and the fifth, which are defined by the ratios 2
1

and 3
2
, respectively. In order to

use both of these intervals with notes of fixed frequency, minor adjustments must be made.

This, in short, is the problem of temperament. Where can we hide these adjustments so that

they’re least noticeable? How can we approximate these ratios on physical instruments? How

can we minimize this problem of ratios?

2 In the Beginning: Pythagorean Intervals

How, then, did this all get started? Why were intervals defined in this mutually incompatible

way? Our story begins as many do, shrouded in myth and legend.

The ancient Pythagoreans were a mystic cult current around 500 BCE. They worshipped

the whole numbers and found ratios between small numbers to be particularly simple and

stable [2]. Legend has it that Pythagoras was working by a blacksmith and heard consonant

(“pleasing”) sounds coming from the forge. He weighed the hammers and found their weights

to be in simple ratios: 4 : 3 : 2 : 1. He then corroborated this result by weighing down equal

lengths of string with weights in the ratio of 4 : 3 : 2 : 1. However, both of these stories are

patently false since actually performing these experiments does not yield the expected inter-

vals . A more realistic (that is, physically plausible and reproducible) explanation suggests

he may have struck “bronze discs of equal diameter but different thicknesses” in the same
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ratio of 4 : 3 : 2 : 1 [7]. Regardless of the exact method, these ratios of simple whole numbers

became the ideal for pure, or “Pythagorean” intervals.

In addition to Pythagorean mysticism, there is also an acoustic basis for favoring these ratios

of simple whole numbers, due to a phenomenon known as the “harmonic series”. Simply put,

any pitch played on an acoustic instrument of frequency a will also produce “harmonics” of

frequency 2a, 3a, 4a, . . . These harmonics are present to various degrees depending on the

instrument being played (this, in fact, is why we can tell the difference between a violin and

a clarinet - the strength of various harmonics allows us to differentiate the two), but they

are all always present to some degree [3]. We can tack on to this the phenomenon known as

“beating”. When two close frequencies are sounded simultaneously, they reinforce each other

(that is, “beat”) according to the difference in their frequencies. For instance, pitches that

sound at 400 Hz (cycles per second) and 402 Hz will beat at a rate of twice per second [3].

This beating is aurally perceptible as a pulse or difference in volume and is often considered

undesirable. Thus, intervals produced that are close to (but not exactly) the simple whole

number ratios generated by the harmonic series will produce ”beats” in the harmonics.

As an example, consider a pure interval of a fifth, in the ratio 3
2
. Let x = 2a and y = 3a.

Then the third harmonic of x(= 3 ∗ 2a = 6a) and the second harmonic of y(= 2 ∗ 3a = 6a)

will reinforce each other. But, if y is slightly out of tune, say y = 3.01a, then its second

harmonic becomes 6.02a, which will beat with the third harmonic of x.

Thus, while the Pythagoreans favored these intervals of simple ratios for their elegance and

mystic properties, there was also a strong acoustic bias for choosing them as well, which was

likely known to practicing musicians of the time.
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3 The Later Greeks: Refining the Ideal

While singers and string players (and often wind players) can often adjust the pitch of each

note to make it “in tune” according to the Pythagorean ideal, some instruments are designed

with fixed, immovable pitches. One such instrument popular among the ancient Greeks was

the lyre, which functioned like a stripped-down version of the modern-day harp [7]. How,

then, can we tune its strings to minimise the problem of ratios?

The Pythagoreans elected to tune based on the principle of using entirely perfect fifths. We

already know that this will not line up with perfect octaves, and the Pythagoreans deduced

this as well. After producing twelve fifths, ((3
2
)12 = 129.746 . . . ), they decided it was close

enough to seven octaves ((2
1
)7 = 128). This meant that the last fifth interval was unusably

large (so large that it became known as the “wolf” fifth in reference to the howling of wolves!),

but the other fifths remained intact [3]. The next smallest interval, in the ratio of 4
3
, is known

as a fourth. It has exactly the same problems of the fifth, just in the opposite direction: when

you increase the bottom note of a fifth by an octave you get a fourth: Instead of a ratio of

3 : 2, you double the 2 to get a ratio of 4 : 3. We then come to the problem of the major

third, in the ratio of 5 : 4. The way intervals are constructed under the Pythagorean system

(the rationale of which is beyond the scope of this paper), four fifths less two octaves should

yield a major third. That is, (3
2
)4 ∗ (2

1
)−2 = 1.265625, which differs wildly from the value

5
4

= 1.25. This was not a satisfactory solution.

Starting with the three most basic consonances of the octave (2
1
), fifth (3

2
), and fourth (4

3
),

it is easy to see that a stacked fifth and fourth exactly equal an octave (since 3
2
∗ 4

3
= 2

1
).

What about the difference between a fifth and a fourth? This smaller interval, called a “tone”

equals 3
2
÷ 4

3
= 9

8
. It would be very neat and tidy if a tone fit exactly into the three basic

consonances.
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According to Ptolemy, the followers of Aristoxenus convinced themselves that the fourth was

equal to two and a half tones, the fifth was equal to three and a half tones, and the octave

was thus equal to six tones as follows [5]:

Z A D C B E

Fourths

Ditones

Figure 1.

Referring to Figure 1, start with a fourth between the pitches A and B, where A is lower

than B. Construct a ditone (two tones stacked on top of each other = (9
8
)2 = 81

80
) AC up from

A and a ditone BD down from B. Then AD = CB is the difference between the ditone and

the fourth. Construct a fourth DE up from D and a fourth CZ down from C. Then AD = BE

(since AB and DE are both fourths, one can simply remove the common ditone BD from the

middle) and likewise CB = AZ. Then BE = AD = CB = AZ. Now, the largest interval thus

formed, EZ, aurally sounds like a fifth. Then the difference between EZ (a fifth) and AB (a

fourth) is known to be a tone and is equal to AZ + BE. Since AZ and BE are themselves

equal, each of the four intervals BE, AD, CB, and AZ must be exactly half a tone. Then AB

(a fourth) consists of two and a half tones and EZ (a fifth) consists of three and a half tones.

Then an octave (consisting of a stacked fifth and fourth) consists of six tones.

However, Ptolemy goes on to show that this cannot possibly be the case by means of ratios.

On an eight-stringed lyre, he asks us to tune the first seven strings in six intervals of a tone

(that is, a ratio of 9
8
) and to to tune the final string in an octave with the first (that is, a

ratio of 2
1
). He claims that the seventh and eighth strings will be very close, but the seventh

string (six tones higher than the first) will always sound slightly higher than the last string

(the perfect octave). This can easily be seen by taking the exact ratio a tone is supposed to

be and multiplying it by itself six times: (9
8
)6 = 531,441

262,144
= 2.027 · · · > 2. Thus, Aristoxenus’s

5



supposed “proof” relied on aural perception (specifically, in the step where EZ sounds like a

fifth) rather than strict mathematical rigor [5].

Following the recognition of the impossibility of equally dividing the scale - a regular series of

intervals that fit within an octave - by rational means and trying to match the actual pitches

used by practicing musicians, a number of competing ratio-scales were put forward by various

theorists [5], but the details of these are better left to scholars of ancient Greek music theory.

For now, we turn to somewhat more modern European approaches to practically dealing with

the problem of ratios.

4 Zarlino: Mechanical Constructions of Geometric Means

Gradually, music began to be played in more and more keys (that is, more and more notes

served as the base of theoretically identical scales). Thus, it became more and more desirable

to even out the intervals so that music played in different keys would sound exactly the same.

That is, even though the actual frequency of a note might change, its ratio relationship to

other notes would remain identical. The sixteenth-century Italian scholar Gioseffo Zarlino

describes two mechanical devices for exactly halving intervals - that is, finding geometric

means [1].

In order to exactly split in an interval into two equal parts, we must find the geometric

mean: that is, given frequencies a and c, we wish to find frequency b such that a
b

= b
c
. Since,

all else being equal, the frequency of a vibrating string is exactly proportional to its length,

we can transfer this problem over into the domain of geometry. Since Medieval times, the

monochord was a popular “instrument” for measuring intervals. As one might surmise from

its name, it consisted of a single string along with a movable piece (called the bridge) that

divided the string into two parts, thus forming an interval [6]. The monochord would have
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been well-known to Zarlino. Given an interval on a monochord, Zarlino describes a method

to find a length that exactly halves the interval - that is, the geometric mean [1].

The following proof is adapted from a publication from the Fourth Diderot Mathematical

Forum [1]:

b

a cR
ST

U

Figure 2.

Referring to Figure 2, we are given a monochord RS with the movable bridge placed at T,

generating lengths a and c, as shown. Find the center of the monochord (a simple compass

and straightedge construction known from the time of Euclid [2]) and construct a semicircle

about the monochord. Construct a perpendicular from the point T (another compass and

straightedge construction) and mark the intersection with the semicricle, U. Then UT has

length b such that a
b

= b
c
.

Proof. Construct SU and UR. Per Thales of Greek antiquity, any angle inscribed in a semi-

circle is a right angle [2]. Then, ∠RUS is right. ∠RTU and ∠STU are right by construction.

By virtue of shared angles, right triangle RTU is similar to right triangle RUS, and right

triangle RUS is similar to right triangle UTS. By transitivity of similarity, triangles RTU and

UTS are similar. By proportionality of similar triangles, RT
TU

= TU
TS

. That is, a
b

= b
c
. Q.E.D.

Zarlino also cites the mesolabium of Eratosthenes, a device that can be used to find cube

roots. This could be used, for instance, to divide an octave into three exactly equal major

thirds. (Recall that a Pythagorean major third was defined as the interval 5
4
; (5

4
)3 = 125

64
=
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1.953125, which is not quite equal to the octave - that is, 2
1
. The mesolabium consisted of

three identical movable rectangular plates that could be slid along two parallel frames. This

device can find cube roots as follows (adapted from David Burton’s text The History of

Mathematics: An Introduction [2]):

A E F I J M N B

C H G L K P O D

Z

Figure 3.

Referring to Figure 3, we are given parallel frames AB and CD with movable rectangular

plates EFGH, IJKL, and MNOP. We tie a string to point E and draw it taut to a point Z

on NO such that HE
OZ

is the ratio to be divded into three equal ratios. For instance, if this

ratio is 2
1

then the mesolabium will find 3
√

2 and 3
√

4 since 2
3√4 =

3√4
3√2 =

3√2
1

.

A E F J N B

C H G K O DW

X
Y

Z

Figure 4.

Figure 4 shows the plates slid underneath each other such that the points X and Y (the

intersection of a plate edge with the next plate’s diagonal) fall along the taut string EZ.

Then KY and GX are the geometric means.
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Proof. Let the string be drawn taut to the lower frame CD at point W. Since GE, KI, and

ML are parallel as are HE, GF , KJ , and ON (which are also perpendicular to CD, we can

establish many similar triangles: Triangles ZWO, YWK, XWG, and EWH are similar, as are

triangles YWO, XWK, and EWG. By proportionality of similar triangles YWK and XWG,

we see that KY
GX

= WK
WG

. By proportionality of similar triangles XWK and EWG, we see that

WK
WG

= WX
WE

. By proportionality of similar triangles XWG and EWH, we see that WX
WE

= GX
HE

.

By combining these three equalities, we yield KY
GX

= GX
HE

. By analogous reasoning, we can

conclude that OZ
KY

= KY
GX

. Then OZ
KY

= KY
GX

= GX
HE

. Q.E.D.

5 Schröter: Linear Algebra Yields Equal Temperament

While Zarlino was able to present constructions for precisely splitting intervals, his repre-

sentation elsewhere of the twelve-note scale still relied on ratios of small whole numbers. As

composers began to treat all pitches nearly identically, it became more and more desirable

to make all the intervals exactly equal - a system known as equal temperament.

Schröter was an eighteenth century harpsichord maker and a member of the Societät der

Musikalischen Wissenschaften, “whose very aim was precisely collaboration in the fields of

music and mathematics” [1]. He presents the following algorithm [1]:

Start with a series of twelve integers. Sum them and use that number to start a new line.

Add the first number of both lines to get the second number of the second line. Continue

on in this manner until you have filled the second line. Now sum the second line to get the

first number of the third line. Sum the first number of the second and third lines to get the

second number of the third line, so on and so forth. . . As an example (as presented in [1]):
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1 2 2 2 2 2 2 2 3 3 3 3 SUM: 27

27 28 30 32 34 36 38 40 42 45 48 51 SUM: 451

451 478 506 536 568 602 638 676 716 758 803 851

Now, this might seem irrelevant to our goals at first, but let’s take a look at what we get

when we divide the second line by its first member, 27.

1 28
27

10
9

32
27

34
27

4
3

38
27

40
27

14
9

5
3

16
9

17
9

(2)

This is already reminiscent of some of the Pythagorean intervals we dealt with earlier - 10
9

approximates the 9
8

tone, the perfect fourth 4
3

is present, and the perfect fifth 3
2

is approx-

imated by 40
27

. When you divide the third line by its first member, 451, you get a series of

ratios that is incredibly close to an equally tempered scale. How can this be?

Proof. Consider this as a problem of linear algebra. The first line of the table can be considered

as a 1-dimensional column vector, ~x. The process of successive adding is exactly equivalent

to the multiplication A~x, where A is



1 1 . . . 1 1

2 1 . . . 1 1

2 2
. . . 1 1

...
. . . . . .

...

2 2 . . . 2 1


Note that the multiplication by the first row of A yields the sum of the first row of the table

(as required), and multiplication by each subsequent row adds on each member of the first

row of the table in turn.

We will now use the power method as described in [4]. Assuming that A has a dominant

eigenvalue, repeated left multiplication of any ~x of the proper dimensions (that is, 12x1)
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by A will yield the dominant eigenvector. Then, we wish to show first that A has a domi-

nant eigenvalue and then that the dominant eigenvector is in the proportions of an equally

tempered scale - that is, where the ratio between each successive pair is equal - that is,

1 2
1
12 2

2
12 2

3
12 2

4
12 2

5
12 2

6
12 2

7
12 2

8
12 2

9
12 2

10
12 2

11
12

First, what is the dominant eigenvalue of A? Generally speaking, the dominant eigenvalue is

the eigenvalue with the strictly largest absolute value [4]. The characteristic equation of A

is (1 + λ)12 = 2λ12. Rewritten, we get λ = 1
12√2−1 . Considering the twelfth roots of unity, we

end up with a basis of twelve eigenvectors of the form λj = 1
12√2e

2πi∗j
12 −1

. As seen in Figure 5,

the denominator of λ0 has the smallest absolute value, so λ0 is the dominant eigenvalue.

1

i

-i

-1

12
√

2e
2πij
12

-1

i

-i

1

12
√

2e
2πij
12
−1

12√2(j = 0)

Figure 5.

We can then verify by more tedious mathematics that

~u0 = 1 2
1
12 2

2
12 2

3
12 2

4
12 2

5
12 2

6
12 2

7
12 2

8
12 2

9
12 2

10
12 2

11
12 is an eigenvector of λ0.

The power method then states that repeated left multiplication of any vector ~x by A will

quickly approximate a multiple of ~u0 - that is, will produce large whole-number ratios that

rapidly approximate a perfectly equally-tempered scale.
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6 In Conclusion: A Modern-Day Perspective

We’ve examined both ancient Greek and later European methods for constructing both in-

tervals and scales - how has this legacy come down to us today? It turns out that modern

musicians most commonly use equal temperament, as composers continued to write music

that treated all notes roughly equally. Indeed, virtually all modern fixed pitch instruments

are tuned to equal temperament. However, as interest has recently grown in historical per-

formance practice, various other systems of temperament espoused throughout history are

finding a resurgence. Meanwhile, those who are able to adjust their pitch (wind players,

string players, and vocalists) often still aspire to the purity of Pythagorean intervals when

playing in ensembles. While no system will ever solve the problem of ratios that tempera-

ment presents, mathematics allows us to accurately quantify and construct the wide variety

of solutions that are beginning to more peacefully coexist.
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